Octave - Método de Euler para solução de EDO
Publicado por Daniel Moreira dos Santos (última atualização em 10/07/2010)
[ Hits: 21.759 ]
Homepage: http://www.danielmoreira.wordpress.com
Em matemática e ciência computacional, o método de Euler, cujo nome relaciona-se com Leonhard Euler, é um procedimento numérico de primeira ordem para solucionar equações diferenciais ordinárias com um valor inicial dado. É o tipo mais básico de método explícito para integração numérica para equações diferenciais ordinárias.
function [vetx,vety] = Euler(funcao,a,b,m,y0);
%parametros de entrada: funcao,a,b,m,y0 -> funcao,limites inferior, superior, num. de
%intervalos e valor inicial
%parametros de saida: vetx, vety -> abcissas e solucao do PVI
h = (b-a)/m;
x=a;
y = y0;
Fxy = eval(funcao);
vetx(1) = x;
vety(1) = y;
disp(' i x y Fxy ');
disp([0 x y Fxy]);
for i=1:m
x = a+i*h;
y = y+h*Fxy;
Fxy = eval(funcao);
disp([i x y Fxy]);
vetx(i+1) = x;
vety(i+1) = y;
end
end
Octave - Método de Runge-Kutta
Octave - Calcular raiz pelo método de Newton
Nenhum comentário foi encontrado.
Modo Simples de Baixar e Usar o bash-completion
Monitorando o Preço do Bitcoin ou sua Cripto Favorita em Tempo Real com um Widget Flutuante
fusermount3 no Ubuntu 25.10 - mantenha o perfil do AppArmor
[Resolvido] dlopen(): error loading libfuse.so.2 AppImages require FUSE to run.
Criação de diretórios e aplicação de restrições de acesso no Linux









