Método de Newton Modificado p/ Raízes Multiplas
Publicado por Rafael Amorim 28/03/2005
[ Hits: 11.360 ]
Homepage: http://www.rafa-amorim.com.br/
O Algoritmo foi desenvolvido para cálcular raízes multiplas de polinômios com grau menor ou igual a 6, através do Método de Newton Modificado. Espero que seja de grande ajuda!!!
#include <stdio.h> #include <math.h> double calculafx(double coef[6], double p0){ double fx; int i; fx = coef[6]; for(i= 5;i>=0;i--){ fx = (p0*fx) + coef[i];} return fx;} double calculadfx(double coef[6], double p0){ double fx, dfx; int i; fx = coef[6]; dfx = coef[6]; for(i= 5;i>=1;i--){ fx = (p0*fx) + coef[i]; dfx = (p0*dfx) + fx;} return dfx;} double calculaddfx(double coef[6], double p0){ double fx, dfx, ddfx; int i; fx = coef[6]; dfx = coef[6]; ddfx = coef[6]; for(i= 5;i>=2;i--){ fx = (p0*fx) + coef[i]; dfx = (p0*dfx) + fx; ddfx = (p0*ddfx) + 2*dfx;} return ddfx;} double modulo(double x){ if (x>=0.0){ return (x);} else{ return (-1.0*x);}} void main(void) { int n, op, grau, i; double e, numer, denom, p0, p, fx, dfx, ddfx, tol, coef[6]; printf("\e[H\e[2J"); tol = 0.000001; printf("Digite 0 p/ polinômio ou 1 p/ exponecial: "); scanf("%i", &op); if (op>0){ printf("\nEntre com o ponto inicial: "); scanf("%lf", &p0); fx = exp(p0) - p0 -1; dfx = exp(p0) -1; ddfx = exp(p0); n =1; p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx)); printf("\nP%i %lf\n", (n-1), p0); e = modulo(p-p0); while (n<20 && e>=tol) { p0 = p; fx = exp(p0) - p0 -1; dfx = exp(p0) -1; ddfx = exp(p0); p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx)); n++; e = modulo(p-p0); printf("P%i %lf\n", (n-1), p0);} printf("\nAproximação p/ raíz é %e\n", p); printf("\nAproximação da f(x) no ponto é %e\n", fx); printf("Com %i iterações\n\n", n);} else{ printf("Entre com o grau do polinômio: "); scanf("%i", &grau); for(i = 0 ; i <= 6 ; i++){ coef[i] = 0; } for(i = 0 ; i <= grau ; i++){ printf("\nEntre com o coeficiente a%i: ", i); scanf("%lf",&coef[i]); } printf("\nEntre com o ponto inicial: "); scanf("%lf", &p0); n = 1; fx = calculafx (coef,p0); dfx = calculadfx (coef,p0); ddfx = calculaddfx (coef,p0); p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx)); printf("\nP%i %lf\n", (n-1), p0); e = modulo(p-p0); while (n<20 && e>=tol) { p0 = p; fx = calculafx (coef,p0); dfx = calculadfx (coef,p0); ddfx = calculaddfx (coef,p0); p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx)); n++; e = modulo(p-p0); printf("P%i %lf\n", (n-1), p0); } printf("\nAproximação p/ raíz é %e\n", p); printf("\nAproximação da f(x) no ponto é %e\n", fx); printf("Com %i iterações\n\n", n); }}
Rotina para controle de portas paralelas em C.
AIMG-mostrar imagem fraquimentada em pontos aleatórios
Jogo da Velha com IA invencivel
1o. joguinho Labirinto (com graficos).c
Aprenda a Gerenciar Permissões de Arquivos no Linux
Como transformar um áudio em vídeo com efeito de forma de onda (wave form)
Como aprovar Pull Requests em seu repositório Github via linha de comando
Como instalar o Google Cloud CLI no Ubuntu/Debian
Mantenha seu Sistema Leve e Rápido com a Limpeza do APT!
Procurando vídeos de YouTube pelo terminal e assistindo via mpv (2025)
Alguém que utilize o Warsaw do BB no Ubuntu 24.04 (1)
Usar uma VM dentro do meu notebook como firewall para um dispositivo e... (1)