Enviado em 09/01/2015 - 11:10h
Antes de tudo , bom dia pessoal.
-----------------------------------------------------------------------------------------------------------------
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{lscape}
%\usepackage{rotating}
%\usepackage{rotfloat}
%\usepackage{natbib}
\usepackage{graphicx}
\begin{document}
%\begin{sidewaystable}
%\begin{table}[f!]
%\begin{sideways}
%\begin{landscape}
\begin{table}[h]
%\begin{sidewaystable}
%\rotatebox{90}{
\scalebox{0.85}{
\begin{tabular}{|l|l|l|l|l|}
\hline \
Distribuição & fdp & parâmetro & FGM & assimetria\\
\hline
Bernoulli & $p^k (1-p)^{1-k}$ & $p \in (0,1)$ & $q+pe^t$ & $\frac{1-2p}{\sqrt{pq}}$\\
\hline \
Binomial & ${n\choose k}p^k(1-p)^{n-k}$ & $p \in (0,1)$ & $(1-p + pe^t)^n \!$ & $\frac{1-2p}{\sqrt{np(1-p)}}$ \\
\hline
Geometrica & $(1 - p)^{k-1}\,p\!$ & $p \in (0,1)$ & $\frac{pe^t}{1-(1-p) e^t}\!$ & $\frac{2-p}{\sqrt{1-p}}\!$\\
\hline
Binomial negativa & ${k+r-1 \choose k}\cdot (1-p)^r p^k,\!$ & r$\geq$0, $p \in (0,1)$ & $\biggl(\frac{1-p}{1 - p e^t}\biggr)^{\!r}$ & $\frac{1+p}{\sqrt{pr}}$ \\
\hline
Poisson & $\frac{\lambda^k}{k!} e^{-\lambda}$ & $\lambda\geq$0, $k\geq$0 & $\exp(\lambda (e^{t} - 1))$ & $\lambda^{-1/2}$\\
\hline
Exponencial & $\mathrm \lambda e^{-\lambda x}$ & $\lambda\geq$1,x$\geq$0 & $\frac{\lambda}{\lambda-t}$ & 2\\
\hline
Normal & $\frac{1}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$ & $\mu\in$R , $\sigma^2\geq$0 & $\exp\{ \mu t + \frac{1}{2}\sigma^2t^2 \}$ & 0\\
\hline
Gama & $\frac{1}{\Gamma(k) \theta^k} x^{k \,-\, 1} e^{-\frac{x}{\theta}}$ & k$\geq$0, $\theta\geq$0 & $\scriptstyle (1 \,-\, \theta t)^{-k}$ & $\scriptstyle \frac{2}{\sqrt{k}}$ \\
\hline
Beta & $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{ Beta(\alpha,\beta)}$ & $\alpha\geq$0, $\beta\geq$0 & $1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$ & $\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}$\\
\hline
Uniforme & $\frac{1}{a-b}$, a$\leq$x$\geq$b & $-\infty < a < b < \infty$ &$\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t(b-a)},\text{para }$ t $\neq$ 0 &0 \\
\hline
Chi-quadrado &$\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}\; x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$ &k $\in$ N (graus de liberdade) &(1-2t)^{k/2}, t<1/2 & $\scriptstyle\sqrt{8/k}$ \\
\hline
Cauchy & $\frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\!$ & $\displaystyle$ x $\in$ ($-\infty$, $+\infty$)\! & não existe & indefinido \\
\hline
Log-Normal &$\frac{1}{x\sigma\sqrt{2\pi}}\ e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}$ &x $\in$ (0, $\infty$) &não está definida nos números reais & $(e^{\sigma^2}\!\!+2) \sqrt{e^{\sigma^2}\!\!-1}$ \\
\hline
Logistica &$\frac{e^{-\frac{x-\mu}{s}}} {s\left(1+e^{-\frac{x-\mu}{s}}\right)^2}\!$ &x $\in$ (0, $\infty$) &$e^{\mu t}\operatorname{B}(1-st, 1+st)$, st $\in$(-1,1) &0 \\
\hline
Pareto & $\frac{\alpha\,x_\mathrm{m}^\alpha}{x^{\alpha+1}}$, x$\ge x_m$ &$x \in [x_\mathrm{m}, +\infty$) &$\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)$ &$\frac{2(1+\alpha)}{\alpha-3}\,\sqrt{\frac{\alpha-2}{\alpha}}$, $\alpha>3$ \\
\hline
Weibull &$\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^{k}}$, x$\geq$0 &$x \in [0, +\infty)\$ &$\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!}\Gamma(1+n/k), \ k\geq$1 &$\frac{\Gamma(1+3/k)\lambda^3-3\mu\sigma^2-\mu^3}{\sigma^3}$ \\
\hline
\end{tabular}
}
%\end{sidewaystable}
\end{table}
%\end{sideways}
%}
\end{landscape}
\end{document}
Customizar a Instalação do Linux Debian com Preseed
Atualizando o Passado: Linux no Lenovo G460 em 2025
aaPanel - Um Painel de Hospedagem Gratuito e Poderoso
Um modo leve de ouvir/ver áudio/vídeo da internet em máquinas pererecas
Resolver algumas mensagens de erro do SSH
Instalar módulo de segurança do Banco do Brasil Warsaw do tipo .run
Possível Migração de windows para linux ???? (pc da empresa) (2)
criar alias do comando "ls -la" (0)
Exibir detalhes de vídeo no Caja (1)