Programa para derivação de funções matemáticas polinomiais
Publicado por Perfil removido (última atualização em 12/03/2010)
[ Hits: 13.285 ]
Implementação de uma aplicação que resolve derivação em função polinomial de uma variável usando técnicas de derivação.
# -*- coding: utf-8 -*- ''' Implementação de programa que resolve derivação em função de uma variável usando técnicas de derivação ''' from estruturas.equacao import Equacao from copy import copy def derivar(equacao, em_funcao): ''' Função base, que identifica a derivada e executa recursivamente a derivação de acordo com a regra aplicável a derivação do termo. ''' assert isinstance(equacao, Equacao), 'É esperado um objeto do\ tipo Equacao' assert isinstance(em_funcao, str),'É esperado um objeto do tipo str' #Condicional definido para a regra 4 - derivar_simples if isinstance(equacao[0], (int, float)): return derivar_simples(equacao, em_funcao) #Condicional definido para a regra 2, derivada de uma soma elif equacao[0] == '+': return derivar_soma(equacao, em_funcao) #Condicional definido para a regra 1, derivada de uma multiplicação elif equacao[0] == '*': return derivar_mult(equacao, em_funcao) #Condicional definido para a regra 3, derivada de um quociente. elif equacao[0] == '/': return derivar_div(equacao, em_funcao) def derivar_simples(equacao, em_funcao): ''' Aplica a derivação de acordo com a Regra 4 O índice 0 corresponde ao multiplicador. O índice 1 corresponde a variável. O índice 2 corresponde ao valor da exponencial. ''' #Deriva, se a derivada está em função da função fornecida. if equacao[1] == em_funcao: eq_aux = Equacao() eq_aux.append(equacao[0]*equacao[2]) eq_aux.append(equacao[1] if equacao[0]*equacao[2] !=0 else 'del') eq_aux.append(equacao[2]-1) return eq_aux else: eq_aux = Equacao() eq_aux.append(0) eq_aux.append(equacao[1]) eq_aux.append(equacao[2]) return eq_aux def derivar_soma(equacao, em_funcao): ''' Aplica a derivação de acordo com a regra 2 e aplica recursivamente a função derivar, para derivar os termos, de acordo com respectiva técnica de derivação. O índice 0 corresponde ao valor da operação, no caso sempre será '+' O índice 1 corresponde ao primeiro termo da soma. O índice 2 corresponde ao segundo termo da soma. ''' eq_aux = Equacao() eq_aux.append(equacao[0]) eq_aux.append(derivar(equacao[1], em_funcao)) eq_aux.append(derivar(equacao[2], em_funcao)) return eq_aux def derivar_mult(equacao, em_funcao): ''' Aplica a derivação de acordo com a regra 1 e aplica recursivamente a funçao derivar, para derivar os termos, de acordo com respectiva técnica de derivação. ''' eq_aux = Equacao() eq_aux.append('+') #Define equação formada pelo primeiro termo #O primeiro termo vezes a derivada do segundo termo eq_termo1_aux = Equacao() eq_termo1_aux.append('*') eq_termo1_aux.append(equacao[1]) eq_termo1_aux.append(derivar(equacao[2], em_funcao)) #Define equação formaa pelo segundo termo #A derivada do primeiro termo vezes o segundo termo eq_termo2_aux = Equacao() eq_termo2_aux.append('*') eq_termo2_aux.append(derivar(equacao[1], em_funcao)) eq_termo2_aux.append(equacao[2]) #Adiciona os termos a equação resultante eq_aux.append(eq_termo1_aux) eq_aux.append(eq_termo2_aux) return eq_aux def derivar_div(equacao, em_funcao): ''' Aplica a derivação de acordo com a regra 3 e efetua recursivamente a funçao derivar, para derivar os termos, de acordo com respectiva técnica de derivação. ''' #Define o primeiro termo da derivada, derivada do primeiro termo vezes o #segundo eq_termo1a_aux = Equacao() eq_termo1a_aux.append('*') eq_termo1a_aux.append(derivar(equacao[1], em_funcao)) eq_termo1a_aux.append(equacao[2]) #Define a segunda parte do primeiro termo. eq_termo1b_aux = Equacao() eq_termo1b_aux.append('*') #Torna o primeiro termo negativo, para a operação '+' ser usada mesmo se #tratando de uma subtração termo_aux = copy(equacao[1]) #Necessário? termo_aux[0] *= -1 eq_termo1b_aux.append(termo_aux) eq_termo1b_aux.append(derivar(equacao[2], em_funcao)) eq_termo1_aux = Equacao() eq_termo1_aux.append('+') eq_termo1_aux.append(eq_termo1a_aux) eq_termo1_aux.append(eq_termo1b_aux) #Define o termo 2 da divisão, o segundo termo da divisão ao quadrado eq_termo2_aux = Equacao() #Tratar caso que o quociente for uma equação if isinstance(equacao[2][0], str): eq_termo2_aux.append('*') eq_termo2_aux.append(equacao[2]) eq_termo2_aux.append(copy(equacao[2])) else: eq_termo2_aux.append(equacao[2][0]*equacao[2][0]) eq_termo2_aux.append(equacao[2][1]) eq_termo2_aux.append(equacao[2][2]*2) #Define a equacão resultande eq_aux = Equacao() eq_aux.append('/') eq_aux.append(eq_termo1_aux) eq_aux.append(eq_termo2_aux) return eq_aux
Cria no fluxbox um menu para mudar o wallpaper
Nenhum comentário foi encontrado.
Passkeys: A Evolução da Autenticação Digital
Instalação de distro Linux em computadores, netbooks, etc, em rede com o Clonezilla
Título: Descobrindo o IP externo da VPN no Linux
Armazenando a senha de sua carteira Bitcoin de forma segura no Linux
Enviar mensagem ao usuário trabalhando com as opções do php.ini
Instalando Brave Browser no Linux Mint 22
vídeo pra quem quer saber como funciona Proteção de Memória:
Encontre seus arquivos facilmente com o Drill
Mouse Logitech MX Ergo Advanced Wireless Trackball no Linux
Compartilhamento de Rede com samba em modo Público/Anônimo de forma simples, rápido e fácil
VMs e Interfaces de Rede desapareceram (12)
Instalação do drive do adaptador wiffi (7)