
Enviado em 23/08/2022 - 11:22h
from keras import backend as K, regularizers
from keras.engine.training import Model
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, \
BatchNormalization, Activation, Input
import ModelLib
class Cifar100_Model(ModelLib.ModelLib):
def build_classifier_model(self, dataset, n_classes=5,
activation='elu', dropout_1_rate=0.25,
dropout_2_rate=0.5,
reg_factor=50e-4, bias_reg_factor=None, batch_norm=False):
n_classes = dataset.n_classes
print(n_classes)
print("----------------------------------------------------------------------------")
l2_reg = regularizers.l2(reg_factor) #K.variable(K.cast_to_floatx(reg_factor))
l2_bias_reg = None
if bias_reg_factor:
l2_bias_reg = regularizers.l2(bias_reg_factor) #K.variable(K.cast_to_floatx(bias_reg_factor))
# input image dimensions
h, w, d = 32, 32, 3
if K.image_data_format() == 'channels_first':
input_shape = (d, h, w)
else:
input_shape = (h, w, d)
# input image dimensions
x = input_1 = Input(shape=input_shape)
x = Conv2D(filters=32, kernel_size=(3, 3), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = Conv2D(filters=32, kernel_size=(3, 3), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(rate=dropout_1_rate)(x)
x = Conv2D(filters=64, kernel_size=(3, 3), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = Conv2D(filters=64, kernel_size=(3, 3), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(rate=dropout_1_rate)(x)
x = Conv2D(filters=128, kernel_size=(3, 3), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = Conv2D(filters=128, kernel_size=(3, 3), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(rate=dropout_1_rate)(x)
x = Conv2D(filters=256, kernel_size=(2, 2), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = Conv2D(filters=256, kernel_size=(2, 2), padding='same', kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(rate=dropout_1_rate)(x)
x = Flatten()(x)
x = Dense(units=512, kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation=activation)(x)
x = Dropout(rate=dropout_2_rate)(x)
x = Dense(units=n_classes, kernel_regularizer=l2_reg, bias_regularizer=l2_bias_reg)(x)
if batch_norm:
x = BatchNormalization()(x)
x = Activation(activation='softmax')(x)
model = Model(inputs=[input_1], outputs=[x])
return model
import models.cifar100_model
def load_model():
return models.cifar100_model.Cifar100_Model()
def get_params(self, deep = True):
return {"learning rate" self.learning_rate}
model_lib = load_model()
model = model_lib.build_classifier_model(dataset)
from sklearn.model_selection import GridSearchCV
x_train = dataset.x_train
y_train = dataset.y_train_labels
learning_rate = [0.01, 0.1]
param_grid = dict(learning_rate = learning_rate)
grid = GridSearchCV(estimator = model, param_grid=param_grid, n_jobs=-1, cv=3, scoring='accuracy')
gridResult = grid.fit(x_train,y_train)
Como atualizar sua versão estável do Debian
Cirurgia para acelerar o openSUSE em HD externo via USB
Void Server como Domain Control
Script de montagem de chroot automatica
Atualizar Linux Mint 22.2 para 22.3 beta
Jogar games da Battle.net no Linux com Faugus Launcher
Como fazer a Instalação de aplicativos para acesso remoto ao Linux
Instalar Dual Boot, Linux+Windows. (5)
Conky, alerta de temperatura alta (16)
De volta para o futuro - ou melhor, para o presente (parte 2) (3)









